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Dynamics of a metastable state nonlinearly coupled to a heat bath driven by external noise
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Based on a system-reservoir model, where the system is nonlinearly coupled to a heat bath and the heat bath
is modulated by an external stationary Gaussian noise, we derive the generalized Langevin equation with
space-dependent friction and multiplicative noise and construct the corresponding Fokker-Planck equation,
valid for short correlation time, with space-dependent diffusion coefficient to study the escape rate from a
metastable state in the moderate- to large-damping regime. By considering the dynamics in a model cubic
potential we analyze the results numerically which are in good agreement with theoretical predictions. It has
been shown numerically that enhancement of the rate is possible by properly tuning the correlation time of the

external noise.
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I. INTRODUCTION

Barrier crossing phenomena are ubiquitous and are a cen-
tral issue in many areas of natural science [1,2]. Since the
reaction coordinates describing the transition across the bar-
rier typically interact with a large number of microscopic
degrees of freedom, a useful theory to start with is the con-
struction of a Hamiltonian which incorporates the effects of a
heat bath environment. The classical treatment of a thermally
activated barrier crossing description is naturally accounted
for by the generalized Langevin equation (may be nonlinear)
and by the corresponding Fokker-Planck equation. Following
Kramers [3,4] the transition rate can then be calculated from
a nonequilibrium steady-state solution of the Fokker-Planck
equation describing a constant flux across the potential bar-
rier. Over several decades the Kramers theory and many of
its variants has served as standard paradigms in various prob-
lems of physical and chemical kinetics to understand the rate
in multidimensional systems in the overdamped and under-
damped limits [5,6], effects of anharmonicities [7], rate en-
hancement by parametric fluctuations [8], the role of non-
Gaussian white noise [7,9], the role of a relaxing bath [10],
quantum and semiclassical corrections to classical rate pro-
cesses [11-13], and related similar aspects.

The common feature of the overwhelming majority of the
aforesaid treatments is that the system is thermodynamically
closed, which means that the noise of the medium is of in-
ternal origin so that the dissipation and fluctuations get bal-
anced through the fluctuation-dissipation relation. However,
in a number of situations the system is thermodynamically
open—i.e., when the system is driven by an external noise
which is independent of the system’s characteristic damping
[14]. The main feature of the dynamics in this case is the
absence of any fluctuation-dissipation relation. While in the
former case a zero-current steady-state situation is character-
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ized by an equilibrium Boltzmann distribution, the corre-
sponding situation in the latter case is defined only by a
steady-state condition, if attainable.

A common approach to studying nonlinear, nonequilib-
rium systems involves a description in terms of a nonlinear
stochastic differential equation [15]. From a microscopic
point of view, the system-reservoir Hamiltonian description
suggests that the coupling of the system and reservoir coor-
dinates determines both the noise and dissipative terms in the
Langevin equation describing the dynamics of the system. If
the system-bath interaction is linear in the bath coordinates
but arbitrary in the system coordinates, the corresponding
generalized Langevin equation incorporates a multiplicative
noise and consequently a nonlinear dissipative term arises
due to the nonlinear system-bath interaction [16]. A canoni-
cal distribution for the initial conditions of the bath variables
yields a zero average for the fluctuations and the fluctuation-
dissipation relation is again maintained [ 16]. However, when
the reservoir is modulated by an external noise, it is likely
that it induces fluctuations in the polarization of the reservoir
[17]. Since the fluctuations of the reservoir are crucially de-
pendent on the response function, one can envisage a con-
nection between the dissipation of the system and the re-
sponse function of the reservoir due to the external noise
from a microscopic standpoint [17]. A direct driving of the
system usually breaks the fluctuation-dissipation relation and
can generate a biased directed motion that is seen in ratchet
and molecular motors [18]. On the other hand, the bath
modulation by an external noise agency maintains a thermo-
dynamic consistency relation, an analog of the fluctuation-
dissipation relation of the closed system, as a result of which
the well-known Kramers turnover feature can be restored
[17].

While nonequilibrium, nonthermal systems have also
been investigated phenomenologically by a number of works
in several contexts [19], these treatment are mainly con-
cerned with the direct driving of the system by an external
noise or a time-dependent field. In the present paper we con-
sider a system-reservoir model where the reservoir is modu-
lated by an external noise and the system is nonlinearly
coupled to a heat bath, thereby resulting a nonlinear, multi-
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plicative generalized Langevin equation. Our object here is
to explore the role of the reservoir response in the system’s
dynamics and to calculate the generalized escape rate from a
metastable state for a nonequilibrium open system in the
presence of multiplicative noise.

A number of different situations depicting the modulation
of the heat bath may be physically relevant. For example,
one may experimentally study the reversible isomerization of
cis-butene to frans-butene, cis-butene= trans-butene. In
terms of the reaction rate theory both isomers represent the
two stable local minima of the potential energy landscape
and are separated by the activation energy which one stable
configuration (cis or trans) needs to overcome to be con-
verted into its isomeric form. To observe the effect of exter-
nal stochastic modulation one can carry out the experiment
in a photochemically active solvent (the heat bath) where the
solvent is under the influence of external monochromatic
light with the fluctuating intensity of a wavelength which is
absorbed solely by the solvent molecules. As a result, the
modulated solvent heats up due to the conversion of light
energy into heat energy by a radiationless relaxation process
and a effective temperaturelike quantity develops due to the
constant input of energy. Since fluctuations in light intensity
results in a polarization of the solvent molecules, the effec-
tive reaction field around the reactants gets modified. Pro-
vided the required stationarity of this nonequilibrium open
system is maintained, the dynamics of the barrier crossing
becomes amenable to the present theoretical analysis that
follows.

Though the dynamics of a Brownian particle in a uniform
solvent is well known, it is not very clear when the response
of the solvent becomes time dependent, as in a liquid crystal
when projected onto an anisotropic stochastic equation of
motion or in the diffusion and reaction in supercritical lig-
uids and growth in living polymerization [20,21]. Also
space-dependent friction is realized from the presence of a
stochastic potential in the Langevin equation [22]. An exact
Fokker-Planck equation for time- and space-dependent fric-
tion was derived by Pollak and Berezhkovskii [23]. Along
with these formal developments, the theories of multiplica-
tive noise have found wide applications in several areas—
e.g., activated rate processes, stochastic resonance, laser and
optics, noise-induced transport, etc. [24]. In passing we men-
tion that the escape rate for a space-dependent friction is just
not a theoretical issue but has been a subject of experimental
investigation over the last two decades [25].

The organization of the paper is as follows: In Sec. II,
starting from a Hamiltonian description of a system nonlin-
early coupled to a harmonic reservoir which is modulated
externally by a Gaussian noise, we derive the generalized
Langevin equation with an effective Gaussian noise &(z). The
statistical properties of &(7) have also been explored. In Sec.
III we construct the corresponding Fokker-Planck equation,
valid for small correlation time, and derive the generalized
Kramers rate for moderate to large friction. In Sec. IV, a
specific example is carried out. Both the numerical and ana-
lytical results are analyzed in Sec. V. The paper is concluded
in Sec. VL.
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II. THE MODEL: HEAT BATH MODULATED
BY EXTERNAL NOISE

We consider a classical particle of mass M nonlinearly
coupled to a heat bath consisting of N harmonic oscillators
driven by an external noise. The total Hamiltonian of such a
composite system can be written as [26,27]

2 N 2

p 1 p; 2 )
H="—+V(x)+— +m;w;(qg;—c; +H,,,

V) 22} (5= 80 | + i

2.1)

where x and p are the coordinate and the momentum of the
system particle, respectively, and V(x) is the potential energy
of the system. (g;,p;) are the variables for the jth bath oscil-
lator having frequency w; and mass m;. ¢; is the coupling
constant for the system-bath interaction, and g(x) is some
analytic function of system coordinate. H,,, is the interaction
term between the heat bath and the external noise &(¢), with

the following form:

N
H, = E K;q,€(t). (2.2)
j=1

The type of interaction we have considered between the heat
bath and the external noise, H;,;, is commonly known as the
dipole interaction [28]. In Eq. (2.2), k; denotes the strength
of the interaction. We consider €(¢) to be a stationary, Gauss-
ian noise process with zero mean and arbitrary correlation
function
(e(1).=0, (eln)e(t")),=2DV(t-1'), (2.3)

where D is the external noise strength, W(z—¢') is the exter-
nal noise kernel, and (- --), implies averaging over the exter-
nal noise processes.

Eliminating the bath degrees of freedom in the usual way
[16] (and setting M and m;=1) we obtain the generalized
Langevin equation

x=v,

g DO dfz_() j ey BEED
X Jo

dx dx(')
+ 295 i), )
by
where
N
YOEDD cjz»a)_]2 cos w;t (2.5)
j=1

and f(¢) is the thermal fluctuation generated due to the
system-reservoir interaction and is given by
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N
fl) = > [cjw?{qj(O) - ¢;g(x(0))}cos w;t + E? sin w;t | .
= j

(2.6)

In Eq. (2.4), 7(z) is the fluctuating force generated due to the
external stochastic driving e(z) and is given by

m(t)=— f dr’' o(t—1t")e(t’), (2.7)
0
where
N
(1) = > Cjw;K; sin w;t. (2.8)
j=1

The form of Eq. (2.4) indicates that the system is driven by
two forcing terms f(7) and 7r(z); both are multiplicative by a
function of system variable dg(x)/dx. Thus we have obtained
a generalized Langevin equation with multiplicative noise.
To define the statistical properties of f(r), we assume that the
initial distribution is one in which the bath is equilibrated at
t=0 in the presence of the system but in the absence of the
external noise agency €(f) such that

@) =0, JOf"))=kgTyt—1").

Now at t=0,, the external noise agency is switched on and
the bath is modulated by €(¢). The system dynamics is gov-
erned by Eq. (2.4), where apart from the internal noise f(¢)
another fluctuating force m(r) appears that depends on the
external noise €(z). So we define an effective noise
&(1)[=f(¢)+ 7(z)] whose correlation is given by [17]

(& &) =kgTy(t—1") +2D f dr’ J ’ dr”
0 0

X (P(t_ l”)(,D(l, _ lm)q’(l‘” _ t///) (29)

along with ((&(1)))=0, where ({---)) means we have taken
two averages independently. It should be noted that the
above equation (2.9) is not a fluctuation-dissipation relation
due to the appearance of the external noise intensity. Rather
it serves as a thermodynamic consistency condition. The sta-
tistical properties of 7(¢) are determined by the normal mode
densities of the bath frequencies, the coupling of the system
with the bath, the coupling of the bath with the external
noise, and the statistical properties of the external noise it-
self. Equation (2.7) is reminiscent of the familiar linear rela-
tion between the polarization and external field, where 7(z)
and €(r) play the role of the former and latter, respectively.
¢(7) then can be interpreted as a response function of the
reservoir due to the external noise €(z). The structure of ()
suggests that this forcing function, although obtained from
an external agency, is different from a direct driving force
acting on the system.

To obtain a finite result in the continuum limit, the cou-
pling function ¢;=c(w) and k;=«(w) are chosen [17] as
c(w)=co/ o\, and Kk(w)=kyw\7.. Consequently ¥(f) and
¢(1) reduce to the following forms:
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2
y1) =0 f dwD(w)cos wt (2.10)
Te
and
(1) = coky f dwD(w)w sin wt, (2.11)

where ¢y and k( are constants and 1/7, is the cutoff fre-
quency of the oscillator. 7, may be characterized as the cor-
relation time of the bath [16]. For 7.—0 we obtain a
S-correlated noise process. D(w) is the density of modes of
the heat bath which is assumed to be Lorentzian:

2 1
Dw)=—"—"—F"757. 2.12
(@) 77w+ TC_.Z) ( )
This assumption resembles broadly the behavior of the hy-
drodynamical modes in a macroscopic system [20]. With
these forms of D(w), ¢(w), and k(w) we have the expres-

sions for ¢(r) and (r) as

o(r) = 2 exp(-1/7,), (2.13a)
TC
2
0
Wt) = — exp(-t/7,). (2.13b)
From Egs. (2.10) and (2.11) we obtain
dy(t 1
—Z,( ) 0} (2.14)
t Ko T¢

Equation (2.14), an important content of the present model,
is independent of D(w). This expresses how the dissipative
kernel y(¢) depends on the response function ¢(z) of the me-
dium due to the external noise &(f).

If we assume that e(r) is a J-correlated noise—i.e.,
(e(t)e(t')),=2D&(t—1t')—then the correlation function of
(1) will be

22
Dcik

(m(t)ym(t)) = exp(~|t-t'|/7), (2.15)

c

where we have neglected the transient terms (z,¢' > 7,.). This
equation shows how the heat bath dresses the external noise.
Though the external noise is a d-correlated noise, the system
encounters it as an Ornstein-Uhlenbeck noise with the same
correlation time of the heat bath but with an intensity de-
pending on the coupling «, and the external noise strength D.
On the other hand, if the external noise is an Ornstein-
Uhlenbeck process with (e(t)e(t')),=(D/ 7" )exp(=|t—t'|/ '),
the correlation function of 7(¢) is found to be

Dcirg 7)1 ( |t—t’|)
Hat'))=——5 ——— -
(m(t)m(t")) I —17 |7 exp >

1 ( |t—t'|)}
- — exp| - ,
T Te

where we have neglected the transient terms. If the external
noise-correlation time is much larger than the internal noise-

(2.16)
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correlation time—i.e., 7> 7.—which is more realistic, then
the dressed noise is dominated by the external noise and we
have, from Eq. (2.16),
|- t’l)
7 )

On the other hand, when the external noise correlation time
is smaller than the internal one, we recover Eq. (2.15).

2 2
()l = 2 CT?"“ eXp(— (2.17)

III. GENERALIZED FOKKER-PLANCK DESCRIPTION
AND KRAMERS ESCAPE RATE

To start with we consider the internal dissipation to be
Markovian (i.e., 7,—0 and the internal noise is Gaussian &
correlated):

) =283t —1') (3.1
where
B= C(Z).

Consequently the generalized Langevin equation Eq. (2.4)
reduces to

xX=v,
5= Bl 0 + 5 0 + 70}
__ d‘;ix) CT(w + ¢’ (D) + 7(0)) (3.2)
where
I'(x)=pBlg' (0] (3.3)

Using Van Kampen’s cumulant expansion method [29],
the Fokker-Planck equation, valid for small correlation time,
corresponding to the above-generalized Langevin equation is
obtained as (see Appendix A)

L) T TG0+ V() 28 (08 1
+Aa2—I;+B£+F(x)P, (3.4)
v v ox
where

A=[g' ()P -TW[g' 1, B=[g'(0),, (3.5)

and /, and J, are defined as

1= f (&N é&(t = 7)dr, (3.62)
0

Je=J &) &t - 7))dT. (3.6b)
0

In Egs. (3.6a) and (3.6b), &(r) is the effective noise term
[&(r)=f(t)+m(r)] as defined earlier. In deriving Eq. (3.4) we
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have assumed that f(7) and €(¢) are uncorrelated as they have
different origins. Equation (3.4) is the first key result of this
paper. It should be noted that when the noise is purely inter-
nal and the system-reservoir coupling is linear, Eq. (3.4) re-
duces to the generalized Kramers equation [4] (valid for
small correlation time).

In Kramers’ original treatment the dynamics of the
Brownian particle was governed by Markovian random pro-
cesses. Since the work of Kramers, a number of authors
[30-33] have extended Kramers’ analysis for the non-
Markovian case to derive the expression for a generalized
escape rate. In order to allow ourselves a comparison with
the Fokker-Planck equation of other forms [31,32,34], we
note that the diffusion coefficient in Eq. (3.4) is coordinate
dependent. It is customary to get rid of this coordinate de-
pendence by approximating the coefficients at the barrier top
or potential well where we need a steady-state solution of
Eq. (3.4). One may also use mean field solution of Eq. (3.4)
obtained by neglecting the fluctuation terms and putting ap-
propriate stationary conditions in the diffusion coefficient.
The drift term in Eq. (3.4) refers to the presence of a dressed
potential of the form

R(x) = V(x) = [¢' (W)U,

The modification of the potential is essentially due to the
nonlinear coupling of the system to the nonequilibrium
modes. J, is a non-Markovian small contribution, and there-
fore the second term of the above equation may be neglected
for small correlation time. For the rest of the treatment we
use R(x)=V(x). For a harmonic oscillator with frequency
o, V(x):w(z)x2/ 2; the linearized version of Fokker-Planck
equation is represented as

(3.7)

P> _ £+I‘P+[I‘ + 2]a—P+Aﬁ+B£
a - Cox U0t T2 TP
(3.8)
where
Ao=[g' (0L, -T(0)[g (0%, By=[g'(0)]*/,
(3.9)

are calculated at the bottom of the potential (x=0). From

Egs. (3.9) we have
Ay=[g'(0)1°1, - T'(0)B,. (3.10)

The general steady-state solution of Eq. (3.8) becomes

1 2 2.2
Psz(x,v)=—exp{—”——L], 3.11)
z 2D, 2(Dy+ By)
where
Ag
=—— 3.12
"= T0) (3.12)

and Z is the normalization constant. The solution (3.11) can
be verified by direct substitution in the steady-state [dP(x
=0,v)/dt=0] version of the Fokker-Planck equation (3.4):
namely,
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P,

P,
-v +TP,+[Tv+ wix]
ox

Py PPy,
+A
o

0 g2 A dx
(3.13)

The distribution (3.11) is not an equilibrium distribution. In
the absence of the external noise €(¢) it reduces to the stan-
dard thermal Boltzmann distribution exp{-[v?+V(x)]/kgT}.
Thus the steady-state distribution for the nonequilibrium
open system plays the role of an equilibrium distribution of
the closed system which may, however, be recovered in the
absence of external noise.

We now turn to the problem of the decay of a metastable
state. In Kramers’ approach [3], the particle coordinate x cor-
responds to the reaction coordinate and its values at the
minima of the potential well V(x), separated by a potential
barrier, denotes the reactant and product states.

Linearizing the motion around the barrier top at x=x;, the
steady-state [dP(x=x;,,v)/dt=0] Fokker-Planck equation
corresponding to Eq. (3.4) reads

P P J PP PP
0" — wpy—" +T(x,) —(P,) + Ay~ +B,—" =0,
dy v v v ady

(3.14)
where
_ e Loy
y=x-x5,, VO)=E,—-wy’, ,>0, (3.15)

2

and the subscript b indicates that all the coefficients are to be
calculated using the general definition of A and B, Egs. (3.5),
at the barrier top. It is interesting to note that for linear cou-
pling, we can extend our analysis for arbitrary correlation
time, and in such a case, the barrier dynamics would have
been governed by the Fokker-Planck equation of Adelman’s
form [34].

To derive a nonvanishing diffusion current across the bar-
rier top Kramers [3] considered Pj(x,v) to be the equilib-
rium Boltzmann distribution (exp{~[v?>+ V(x)]/kzT}) multi-
plied by a propagator F(x,v) and used it to solve the Fokker-
Planck equation. In our model the equilibrium distribution
should be replaced by the steady-state distribution which de-
pends on the local nature of the potential at the barrier top
and the effective temperaturelike quantity for the nonequilib-
rium open system. However, in the absence of the external
noise €(z) the steady-state distribution reduces to the equilib-
rium Boltzmann distribution. Following Kramers [3], we
thus assume that the nonequilibrium steady-state probability
P(x,v) generating a nonvanishing diffusion current across
the barrier is given by

2
Py(x,v) = exp[— { o V()

}}F(x,v), (3.16)

— +
2D, D,+B,
where
Ap
Dy=——, 3.17
"= Ty (3.17)
with
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1
V(x)=Ey+ Engz (near the bottom)

1
=E,+ Ew;z,(x -x,)*  (near the top).

The expression (3.16) denoting the steady state distribution
is motivated by the local analysis near the bottom and the top
of the potential. For a stationary nonequilibrium system, on
the other hand, the relative population of the two regions, in
general, depends on the global properties of the potential
leading to an additional factor in the rate expression. Be-
cause of the Kramers-type ansatz, which is valid for the local
analysis, such a consideration is outside the scope of the
present treatment.

Following Kramers’ original reasoning [3] we then derive
the barrier crossing rate K for the moderate- to large-friction
regime (see Appendix B for a detailed calculation):

= €X s
27T(D0+B0)1/2 1 +ADb P Db+Bb

(3.18)

where E, is the barrier height of the potential and the param-
eter A is given by

__
_A,,+aBb’

with

B
—)\:F(xh)+a<1+—b),
D,

__ Dby N =T
a_Z(Db+Bb){ F(xp) = VI (xp) + 4wi}.

The strength of the external noise and the damping function
are buried in the parameters D, By, D,, B;,, and A. Equation
(3.18) is the second key result of this paper. Here we note
that (D,+B,)/kg in the exponential factor of Eq. (3.18) de-
fines a new effective temperature characteristic of the steady
state of the nonequilibrium open system and an effective
transmission factor is contained in the prefactor controlling
the barrier crossing dynamics. As expected both are func-
tions of the external noise strength and the coupling of the
noise to the bath modes. In the absence of external stochastic
modulation, €(r)=0, Eq. (3.18) reduces to the standard
Kramers result [3]: namely,

wy H(ﬁ)z 2}1/2 B} <_Eb)
— +wy - |expl —],
27w, 2 2 kgT

which can be verified with explicit forms of the parameters
Dy, By, Dy, By, and A with J,=0, I,= kT, g(x)=x, and D or
Ko equal to zero.

As the understanding of the theoretical aspects of non-
equilibrium statistical mechanics became better a vast body
of literature emerged modifying Kramers’ original approach
which are well documented in the review by Hinggi,
Talkner, and Borkovec [4]. In the following we briefly dis-

Kxramers =
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cuss one of the issues from the post-Kramers development of
the reaction rate theory which is closely connected to our
work. Though Kramers’ original approach was restricted by
the Markovian assumption, however, in certain situations the
memory effect becomes important and the generalized
Langevin equation with a memory kernel must be accounted
for. To the best of our knowledge following the seminal work
in this direction by Grote and Hynes [30], Hinggi and Moj-
tabai [31] and Carmeli and Nitzan [32] have extended Kram-
ers’ work for an arbitrary memory friction and have found
that the rate can often be larger than one would obtain from
Kramers’ original approach. The analysis of Hinggi and
Mojtabai [31] was based on the non-Markovian Fokker-
Planck equation of Adelman [34] for a parabolic potential,
and they have used essentially the same approach as Kram-
ers. The generalized Fokker-Planck approach has also been
adopted by Carmeli and Nitzan [32] to derive an expression
for the steady-state escape rate in the non-Markovian regime.
All of the above-mentioned theoretical approaches were first
supplemented by a full stochastic simulation by Straub,
Borkovec, and Berne [33] where the authors explicitly stud-
ied the dynamics within the framework of the non-
Markovian generalized Langevin equation. Incorporation of
the memory effect in the above-mentioned work is reflected
in the rate expression

o [ ) 2ol
+ W}, - — |exp ,

2w, 2 2 kgT

where y and @, are the long-time limit of the memory kernel
v(t) and the renormalized frequency at the top of the poten-
tial wy(7), respectively. In this paper we have extended the
above-mentioned approaches [31,32,34] for state-dependent
diffusion in the non-Markovian regime to obtain a general-
ized steady-state escape rate when the bath is modulated by
an external stochastic force. Though our treatment is valid
for small correlation time, it incorporates most of the char-
acteristics of the non-Markovian state-dependent diffusion
process.

K memory —

IV. SPECIFIC EXAMPLE: HEAT BATH DRIVEN
BY EXTERNAL COLORED NOISE

As a specific example we consider that the heat bath is
modulated externally by a colored noise e(¢) with noise cor-
relation

() elt)e =2 exp(— M) 4.1)

where D, and 7, are the strength and correlation time of the
external noise, respectively. In addition to that we consider
the internal noise f(7) to be white (i.e., 7.—0). The effective
Gaussian-Ornstein-Uhlenbeck noise &) =f(¢)+m(r) will
have an intensity Dy and a correlation time 75 given by [16]

Dg= f (&(1)£(0))dt,
0
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FIG. 1. (Color online) Variation of the escape rate K with dissi-
pation constant B with (a) u=0 and (b) x=0.5 using the parameter
set by =1.0, E,=5.0, kgT=0.1, K(2)=5.0, D,=0.1, and 7,=0.01, where
the solid line and circle represent analytical and numerical rates,
respectively.

1 o
"= f K&(1)£(0))dr.
rJ0
Following the above definitions and using Eq. (2.9) we have
[see Eq. (2.17)]

Dy =ci(kgT + D, %) = BlkpT + D,K3), (4.2a)

22 P
D,y BD. kg
= 7,= T

TR= e e
Dg Dg

(4.2b)

Consequently the functions A(x) and B(x) in Eq. (3.4) be-
come

A() =[g' ) PPDg-T()[g' (x)*rzDg,  (4.3a)

B(x) =[g' (x)7xDx. (4.3b)

From these equations we may evaluate the various param-
eters to obtain the generalized escape rate from Eq. (3.18).

V. RESULTS AND DISCUSSIONS

To study the dynamics we consider a model cubic poten-
tial of the form V(x)=b,x*>—b,x> where b, and b, are the two
constant parameters with b;,b, >0, so that the activation en-
ergy becomes Eb=4b?/ 27b§. The nonlinear coupling func-
tion is taken to be g(x)=x+(1/2)ux?, w being a constant
implying the strength of nonlinearity of the coupling func-
tion. We then numerically solve the Langevin equation (3.2)
using a second-order stochastic Heun’s algorithm. To ensure
the stability of our simulation we have used a small time step
Ar=0.001, with At/7,<1. The numerical rate has been de-
fined as the inverse of the mean first-passage time [35]. The
mean first-passage time has been calculated by averaging
over 10 000 trajectories. The value of the other parameters
used are given in the respective figure.

One of the result of Kramers’ theory is that K varies in-
versely in the intermediate- to strong damping regime. In
Fig. 1 we have plotted the rate constant K against the damp-
ing constant ,8=c(2) in the moderate- to large-damping region
where our theory is valid and we compare the theoretical
result (3.18) with the numerical simulation data for two dif-
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0107 oo —
0.08{—*—p=02

0.06
X 0.04

FIG. 2. (Color online) Variation of the analytical rate constant K
with K(Z) for different values of the strength of nonlinearity u with
b;=1.0, E;=5.0, kgT=0.1, B=1.0, D,=1.0, and 7,=0.01.

ferent values of the nonlinear coupling parameter u. It is
observed that the agreement between the theoretical predic-
tion and numerical simulation is quite satisfactory. In Fig. 2
we plot the variation of rate constant K, obtained from the-
oretical result (3.18), with external coupling constant K(z) for
various nonlinearity parameters. We observe that for a given
M, the rate increases nearly linearly, and for a particular
value of «, an increase in u causes a decrease in the rate,
which is also observed in Fig. 3(a) where we have plotted K
vs w for different values of D, from analytical result) and
Fig. 3(b) (where the same has been observed numerically for
different temperatures).

In his dynamical theory of chemical reaction, Kramers
identified two distinct regimes of stationary nonequilibrium
states in terms of the dissipation constant 8. The essential
result of Kramers’ theory is that the rate varies linearly in the
weak-damping regime and inversely in the intermediate- to

0.06
@) —e—D =05
0.05+ —=—D.=1.0
0.04 —4—D=20
0031 \
0.02] "
P
0.01 \\:‘\i‘:‘w‘ o g |
0.00 — e ————
00 02 04 06 08 1.0
n
—e—K,T=0.01
—a—k_ T=0.10
—a—K_T=0.50

=

FIG. 3. (Color online) Variation of the rate constant K with
strength of nonlinearity w (a) for different values of external noise
strength D, (calculated analytically using kzT=0.1) and (b) for dif-
ferent values of temperature kzT (calculated numerically using D,
=1.0). The values of the other parameters used are b;=1.0, E,
=5.0, 8=3.0, k5=5.0, and 7,=0.01.
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T
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-- -k T=005 .
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FIG. 4. (Color online) Turnover of the rate constant K (numeri-
cal) with dissipation constant 3 for (a) different values of w (for
kgT=0.1) and (b) different values of kzT (for x=0.5). The values of
the other parameters used are b;=1.0, E,=5.0, D,=1.0, Ké=5.0,
and 7,=1.0.

strong-damping regime. In between the two regimes the rate
constant as a function of damping constant exhibits a bell-
shaped curve known as Kramers’ turnover [4]. In the tradi-
tional system reservoir model the dissipation and fluctuations
are connected through the fluctuation-dissipation relation. A
typical signature of this relation can been seen through this
turnover phenomenon. Whereas for a thermodynamically
open system, where the heat bath is modulated by external
noise, both the dissipation B8 and response function ¢ depend
on the properties of the reservoir. Due to this connection
between the dissipation and external noise source, Eq. (2.9)
plays the typical role of a thermodynamic consistency rela-
tion, an analog of the fluctuation-dissipation relation for a
thermodynamically closed system, for which one can expect
a turnover feature for this open system. In Figs. 4(a) and 4(b)
we have plotted the rate constant K obtained from Langevin
simulation for a wide range of damping constants for differ-
ent values of the nonlinearity parameter u and temperature,
respectively. The figures, apart from demonstrating the turn-
over of the rate constant with the variation of the damping
constant, show a shifting of the maxima towards the left—
i.e., weak-damping regime with an increase of u—and also
is consistent with Fig. 3.

While observing the variation of the rate constant K as a
function of correlation time (7,) of the external noise for
different D, [Fig. 5(a)], different temperature [Fig. 5(b)], and
for different nonlinearity parameter u [Fig. 5(c)], we find an
interesting result. In all cases K passes through a maxima,
then decreases and ultimately becomes independent of 7, for
large values of 7,. In short the rate of barrier crossing exhib-
its a resonance behavior with the correlation time of external
noise which is responsible for the fluctuations of the barrier
height. The above resonance phenomenon is known as reso-
nant activation (RA) [36]. So far RA has been observed due
to the barrier fluctuation as a result of a direct driving of
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FIG. 5. (Color online) Numerical variation of the rate constant
K with correlation of external noise 7, for (a) different values of the
strength of external noise D, (for kzT=0.1 and ©=0.5), (b) different
values of kT (for D,=1.0 and ©=0.5), and (c) different values of u
(for kgT=1.0 and D,=1.0). The values of the other parameters used
are b;=1.0, E,=5.0, 8=5.0 [for (b) B=3.0], and x;=5.0. Note the
logarithmic abscissa in (a) and (b).

correlated noise to the system. In this model the barrier fluc-
tuation occurs, Eq. (3.2), due to the driving of the nonlin-
early coupled heat bath with the system by correlated noise.
So RA occurs as a result of a correlated-noise-driven bath,
which is an interesting and new feature, instead of direct
system driving. The immediate experimentally observable
situation could be if we consider a simple unimolecular
isomerization reaction in a photochemically active solvent
under the influence of fluctuating light intensity (see Sec. I);
the reaction rate can be enhanced by tuning the correlation
time of the fluctuating light field. It is also interesting to note
that our nonlinear coupling model which yields a state-
dependent diffusion may have an important consequence on
the generation of current for a Brownian particle moving in a
periodic potential without any external bias. Because of its
extraordinary success in explaining experimental observa-
tions on biomolecular motors active in muscle contractions,
state-dependent diffusion has attracted wide interest in recent
years [37].

VI. CONCLUSION

Based on a system reservoir microscopic model where the
system is nonlinearly coupled to a heat bath which is modu-
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lated by an external, stationary Gaussian noise with an arbi-
trary decaying correlation function, we have generalized
Kramers’ theory and have numerically analyzed the model to
calculate the steady state rate of escape from a metastable
well. We have shown that since the reservoir is driven by
external noise and the dissipative properties of the system
depend on the reservoir, a simple connection between the
dissipation and the response function of the medium due to
external noise can be established. We then followed the dy-
namics of the open system in the spatially-diffusion-limited
regime and derived the Fokker-Planck equation (correspond-
ing to the Langevin equation with space-dependent dissipa-
tion and multiplicative noise) with space-dependent diffusion
coefficient containing an effective temperaturelike quantity.
We then derived the generalized Kramers escape rate for the
moderate- to strong-damping regime. From the point of view
of a realistic situation we considered the special case where
the internal noise is white and the external noise is colored
and have calculated the escape rate for a model cubic poten-
tial. We also numerically simulate the Langevin equation and
observe that the theoretical prediction agrees reasonably well
with the numerical result. The dependence of the rate K on
various other parameters has been studied, and it is observed
that the enhancement of the rate is possible by tuning the
correlation time of external noise. The creation of a typical
nonequilibrium open situation by modulating a bath with the
help of an external noise is not an uncommon phenomenon
in applications and industrial processing. The external
agency-generating noise does work on the bath by stirring,
pumping, agitating, etc., to which the system dissipates in-
ternally. In the present treatment we are concerned with a
nonequilibrium steady state that signifies a constant through-
put of energy. We believe that these considerations are likely
to be important in other related issues in nonequilibrium
open systems such as thermal ratchet and related problems.

So far, in this paper, we have considered a linear coupling
in the interaction between the heat bath and the external
dtriving noise, H;,. It will be interesting to see how the dy-
namics changes when H;,, is nonlinear. Studies have been
made recently on anomalous diffusion in the presence of
correlated external noise [38]. Our present methodology may
be extended to investigate the transport process when the
bath is modulated by two correlated external noises. In our
future communication we would like to address such issues.
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APPENDIX A: DERIVATION OF THE FOKKER-PLANCK
EQUATION

Equation (3.2) can be written in the following form:

iy = Gy(uy,us,t;£(t), m(t)), (Ala)
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uZ: G2(ul’u29t;f(t)’77(t))’ (Alb)
where we have used the abbreviations
U =x, (A2a)
Uy=v (A2b)
and
G =v, (A3a)
dV(x) ,
Gy,=- PR IF'xv+g O{f(r) + =(1)}. (A3b)

The vector u with components u; and u, thus represents a
point in a two-dimensional “phase space” and Egs. (Ala)
and (A1b) determine the velocity at each point in this phase
space. The conservation of the points now asserts the follow-
ing linear equation of motion for density p(u,f) in phase
space [29]:
2
d d
gp(”t’l‘) == 2 _Gn(uJ’f(t)sw(t))p(u’t)

n=1 OUy
Oor more COIl’lpaCtly

9P _

-V-Gp.
at P

(A4)

Our next task is to find a differential equation whose av-
erage solution is given by (p) [29] where the stochastic av-
erage has to be performed over two noise processes f(f) and
€(1)-V-G can be partitioned into two parts: a constant part
V-G, and a fluctuating part V-G (), containing these noises.
Thus we write

V- G(u,t,f(1), (1) =V - Go(u) + a V - G (u,1,f(2), 7(1)),
(AS5)

where « is a parameter (we put it as an external parameter to
keep track of the order of the perturbation expansion in a7,
where 7, is the correlation time of the €(7); we put a=1 at the
end of the calculation) and also note that ({(G,(r)))=0. Equa-
tion (A4) therefore takes the following form:

p(M,t) = (AO + aAl)p(“J), (A6)

where Ay=—V-G, and A;=-V-G,. The symbol V is used for
the operator that differentiates everything that comes after it
with respect to u. Making use of one of the main results for
the theory of a linear equation of the form (A6) with multi-
plicative noise [29], we derive an average equation for
p [{p)=P(u,1), the probability density of u(r)]:

P = {Ao+ asz d(A,(t)exp(TAp)A,(t - 7))

at o
X exp(— TAO)}P. (A7)

The above result is based on second-order cumulant expan-
sion and is valid for the rapid fluctuations with small strength
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where the correlation time 7, is short but finite [29]—i.e.,
A0A(t")y=0 forlt—1t'|>7,.

Equation (A7) is exact in the limit 7, trends to zero. Using
the expansions for Ay and A; we obtain

P *
o {— V-Gy+ azf dr(V - G(t)exp(= 7V - Gy)
0

X V-G (t-1)exp(7V - GO)}P. (A8)

The operator exp(—=7V -G,) in the above equation provides
the solution of the equation

dG(u,t)
ot

==V -GyG(u,t) (A9)

(G signifies the unperturbed part of p), which can be found
explicitly in terms of characteristic curves. The equation

i = Go(u) (A10)

for fixed ¢ determines a mapping from u(7=0) to u(7)—i.e.,
u— u" with the inverse («”)""=u. The solution of Eq. (A9) is
given by

du™)
d(u)

G(u,1) = G(u™,0) ‘ =exp(=1V - Gy)G(u,0),

(A11)

|d(u™")/d(u)| being a Jacobian determinant. The effect of
exp(-=tV -Gy) on G(u) is given by

du™)
d(u)

. (A12)

exp(=tV - Gy)G(u,0) =G(u™",0) ‘

The above simplification when we put in Eq. (A8) yields

P “ o ldu
—=V-{—G0+a2f dr @™

X{G ()7 Gy (w1 = 7))

d(u)

d(u)
du™) }P’
(A13)

where V__ denotes differentiation with respect to u_,. We put
a=1 for the rest of the treatment. We now identify

u=x,
u,="v,
G()]:U, G”:O,

G =-Txv-V'(x),

Go=g' {f(t) + m(1)}.

In this notation Eq. (A13) now reduces to

(A14)
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P __ a_i(” P+ %{F(x)v + V' (0)}P

ot
+ ai f dr<[g'(x){f(l) +7(1)}]
vJo

|5

where we have used the fact that the Jacobian obeys the
equation [29]

d d(x v')
dt d(x v)

= 1)+ 7t - T)]}D

(A15)

_
T ook

d
—+—{-Tv+V'x)}=-T

v
so that the Jacobian equals e™'".

As a next approximation we consider the “unperturbed”
part of Egs. (Ala) and (Alb) and take the variation of v

during 7, into account to first order in 7,. Thus we have
=v+I'w+7V'(x). (A16)

Neglecting terms O(7), Eq. (A16) yields

x"=x-7, v

J
"

J Jd
=(1-T)—+7—.
v ox

Taking this into consideration Eq. (A15) can be simplified
after some algebra to the following form:

OP(x,v,1) oP

=-v - +[C(x)v + V' (x) - 2g’(x)g”(x)~]e]j_f

ot
+A@+B£+F(}C)P (A17)
n? v dx
where
A= [g,(x)]zle - F(x)[g,(x)]z‘,e’ B= [gl(-x)]z‘lea
(A13)
and /, and J, are defined as
I,= f ()€t - 7)d, (A19a)
0
Jo= J &) &1 - 7)dT. (A19b)
0

APPENDIX B: DERIVATION OF THE ESCAPE RATE

Inserting Eq. (3.16) into Eq. (3.14), we obtain the equa-
tion for F(x,v) in the steady state in the neighborhood of x;:

_Dy
D,+ B,
PF PF

+A,—5 +B,——=0. B1
b&vz b&v&x B1)

oF
- (1 + Bb/Db)UE - |: wi(-x - -xb) + F(Xb)U -

At this point we set
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u=v+alx—x,), (B2)

where a is a constant to be determined. With the help of
transformation (B2), Eq. (B1) reduces to the following form:

d’F D
{Ab+aBb} 5~ |: b
dM Db+Bb

Area1+ 2]},

D B
b wi(x—xb)+ F(xb)+a<l+—b) v=-—\u,
D,+B, D,

2
wy(x =x,)

dF
—=0. B3
n (B3)

Now let

(B4)

where A\ is another constant to be determined later. By virtue
of the relation (B4), Eq. (B3) becomes

d*F dF
—+ Au—=0, (B3)
du du
where
A
=—. (B6)
Ab + Cle

The two constants N and a must satisfy the simultaneous
relations

D,
wj,,
D,+ B,

-\Na=

B,,)
-A=T 1+—).
(xb)+a< +Db

This implies that the constant ¢ must satisfy the quadratic
equation

D,+B D
P2 4 T(xy)a - b o
D, D,+ B,

=0,
which allows the solutions for a as

D, /—
a N Xp) £ .x CU

The general solution of Eq. (B5) is
u A 2
F(u):sz exp(— %)dz+Fl, (BS)
0

where F'| and F, are constants of integration. We look for a
solution which vanishes for large x. This condition is satis-
fied if the integration in Eq. (B8) remains finite for |u|—
+o0, This implies that A>0 so that only a_ becomes rel-
evant. Then the requirement P,(x,v) — 0 for x— +0o0 yields

F1=F2\“’7T/2A. (B9)

Thus we have
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u 2
F(u):FZ[\/%+f exp(— A%)dz:|
0

and correspondingly

u 2
Pb(x,v)=F2|:\/£+f exp(— A%)dz]
0

2
Vix
X exp| — U—+L . (B10)
2D, D,+B,
The current across the barrier associated with the steady-
state distribution is given by

+OC
J'=f vPL(x =x,,0)dv,

—o0

which may be evaluated using Eq. (B10) and the linearized
version of V(x)—namely, V(x)=E,—(1/ 2)w127(x—xb)2—as

'_F< 2 )mD ( b ) (B11)
R ex E )
7=\ A vy »P\p. B,

To determine the remaining constant F, we proceed as
follows. We first note that as x— —o° the preexponential fac-
tor in Eq. (B10) reduces to the following form:

12

(B12)

We then obtain the reduced distribution function in x as

12 _
ﬁb(x—>—00):27TF2<%) exp(D‘i();) ), (B13)
bt By

where we have used the definition for the reduced distribu-
tion as

PHYSICAL REVIEW E 74, 061119 (2006)

+00

P(x,v)dv.

—00

P(x) =

Similarly we derive the reduced distribution in the left well
around x=0 using Eq. (3.11) where the linearized potential
is V(x):w(z}x2/2,

2.2
— 90X ) (B14)

~ 1 e (
P =—\2mD P uE—
St(‘x) K 0 exp 2(D0 + BO)

_\‘!
Z
with the normalization constant 1/Z given by

o e
Z 2m\Dy(Dy+By)
Comparison of the distributions (B13) and (B14) near x
=0, i.e.,
P 5(X0) = P »(X0),
gives
. (_)1/2 @ (B15)
*"\p, 2m\27(Dy+ By)

Hence from Eq. (B11), the normalized current or the barrier
crossing rate K, for moderate to large friction, is given by

(O0) Db A 172 - Eb
K=— 7 exp ,
27T(D0+Bo) 1 'i‘./\l)}7 Db+Bh
(B16)

where E, is the potential barrier height.
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